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Abstract

In the digital era, fragmented information disseminated by social media and algo-

rithmic recommendations increasingly shapes public opinion, raising significant concerns

about filter bubbles and polarization. This paper investigates the impacts of algorithmically

induced information biases on belief updating as well as learning efficiency and polariza-

tion, compounded by intrinsic cognitive biases. Using a controlled laboratory experiment

in which participants sequentially update their beliefs based on signals drawn from poten-

tially biased sources, we document a persistent pattern of surprise-driven learning: contrary

to the well-established confirmation bias, participants systematically overreact to signals

that challenge their prior beliefs. When information originates from biased sources, both

polarization and learning inefficiency increase. However, mere awareness of source bias

is insufficient to mitigate these adverse effects. While awareness dampens the tendency to

overreact to disconfirming information, it does not improve learning efficiency and even

exacerbates polarization.
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1 Introduction

In an era marked by rapid technological advancement and an unprecedented surge in informa-

tion, digital platforms, such as TikTok and Youtube, profoundly influence billions of individuals

globally by reshaping the dissemination and reception of information. As individuals are in-

creasingly exposed to exploding volumes of fragmented content, they form and update their

opinions on unfolding events at an accelerating pace. Information is increasingly disseminated

in fragmented forms via social media and algorithmic recommendations, subtly shaping public

opinion and attitudes. This phenomenon, closely associated with the emergence of filter bub-

bles and opinion polarization, has garnered substantial attention (Pariser, 2011; Bakshy et al.,

2015; Sunstein, 2018; Allcott et al., 2020). In particular, a growing body of literature expresses

concerns that algorithmic biases systematically reinforce users’ prior beliefs, as media outlets

and recommendation algorithms increasingly tailor content to consumer preferences, thereby

creating filter bubbles and exacerbating political and social polarization (Mullainathan, 2002;

Allcott and Gentzkow, 2017; Bowen et al., 2023; Qian and Jain, 2024).

Nevertheless, the precise impact of filter bubbles on polarization remains an open ques-

tion. While many scholars argue that these bubbles significantly drive polarization (Santos

et al., 2021; Mosleh et al., 2021a,b), other studies identify only limited effects of algorithmic

personalization (Hosseinmardi et al., 2021, 2024). Interestingly, exposure to opposing views

can sometimes backfire, further intensifying polarization rather than mitigating it (Bail et al.,

2018). Beyond algorithmically induced biases, inherent cognitive biases in human information

processing complicate this issue further, especially given their potential interactions. Although

previous research has separately examined algorithmic and cognitive biases (e.g., Levendusky,

2013; Martin and Yurukoglu, 2017; Bail et al., 2018; Guess et al., 2021), studies explicitly

exploring their interaction remain scarce (Faia et al., 2024; Acemoglu et al., 2025).

Our study addresses this gap by systematically investigating how individuals update be-

liefs when exposed to sequences of potentially biased signals. Utilizing a unified theoretical

framework and a controlled laboratory experiment, we explore how biased information sources

influence belief updating, particularly in how individuals interpret and weigh new information

in relation to their prior beliefs, and consequently affect learning outcomes such as learning ef-
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ficiency and belief polarization. Additionally, we assess whether awareness of source bias acts

as an effective mitigation strategy. To accomplish these goals, we conduct a controlled labora-

tory experiment comprising five treatments, wherein subjects predict the composition (number

of red balls) of a virtual ambiguous urn containing 99 balls. In the first period, subjects receive

private random draws and make initial predictions; subsequently, in periods 2–11, they update

predictions based on subsets of another subject’s initial draws. In the baseline treatment, infor-

mation sources are unbiased and randomly selected from all other subjects in the same session.

In contrast, biased treatments restrict information sources to subjects whose initial predictions

are congruent (or incongruent) with the receiver’s own. These biased treatments further vary

by whether subjects are explicitly informed about source bias: in “awareness” treatments, sub-

jects are notified that subsequent information in periods 2–11 originates from congruent (or

incongruent) sources.

To analyze how participants interpret new signals, we develop a measure termed interpreted

red balls, based on the previous and updated predictions. Namely, it is the implied signal that

a rational agent would observe in order to make the updated prediction. Comparing interpreted

and observed signals, we find that, in the baseline treatment where signals are unbiased, partic-

ipants systematically overreact to surprising signals1, reflecting a surprise-driven updating bias.

This pattern opposes traditional confirmation bias but in line with the findings by Charness et al.

(2021) and Kieren et al. (2020). Despite this surprise-driven updating bias, as unbiased signals

accumulate, both learning inefficiency and belief polarization diminish over time.

When subjects unknowingly receive signals from biased sources, this overreaction to sur-

prising signals persists, yet unnoticed biases systematically distort belief updating, elevating

both learning inefficiency and polarization compared to baseline treatment. In the meantime,

informing subjects about source bias reduces overreaction, prompting more literal interpre-

tations of surprising signals, especially from incongruent sources. However, this awareness

exacerbates polarization without significantly affecting average learning efficiency. Thus, our

results indicate that awareness of source bias alone may not effectively mitigate polarization or

enhance learning inefficiency.

1Signals are considered surprising if its color-majority differs from that of the previous prediction. See Sec-
tion 4.2 for detailed discussions.
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Our paper speaks to several strands of literature. First, our study contributes to the literature

on biased belief updating, encompassing both the widely documented confirmation bias, the

tendency to disproportionately seek, interpret, or weigh information in favor of existing beliefs

(Wason, 1960; Levy and Razin, 2019; Williams, 2024), and a related but distinct phenomenon

in which individuals seek or overreact to information contradicting their prior expectations

(Charness et al., 2021; Kieren et al., 2020), which we term surprise-driven learning bias. While

confirmation bias typically emerges in contexts involving motivated reasoning, such as self-

related (e.g., ego or self-image) beliefs or deeply held ideological positions, surprise-driven

learning bias is more likely to appear in relatively neutral settings, where prior beliefs are less

entrenched or personally significant (Nickerson, 1998; Coutts, 2019; Charness et al., 2021).

Our findings reveal that without any knowledge about source bias, participants overreact to sig-

nals that contradict their prior beliefs, suggesting supportive evidence of surprise-driven learn-

ing rather than confirmation bias. Furthermore, when informed of the source bias, participants

interpret new signals more cautiously and the surprise-driven learning bias is substantially at-

tenuated. Our experiment, centered on short-term beliefs in a controlled inference task with

modest personal stakes, aligns closely with this neutral domain. Accordingly, our findings

of overreaction to surprising signals do not contradict the established evidence on confirmation

bias; instead, they highlight the nuanced role that motivation and belief strength play in shaping

biased updating behavior.

Our study also aligns closely with the literature on social learning, which examines how in-

dividuals derive knowledge from observing others. Classic social learning models (e.g., Baner-

jee, 1992; Bikhchandani et al., 1992) demonstrate that sequential observational learning can

lead to rational herding or informational cascades, where agents disregard their private infor-

mation and imitate predecessors, resulting in inefficient outcomes. These theoretical predic-

tions have been extensively tested in experimental studies (see, e.g., Anderson and Holt, 1997;

Weizsäcker, 2010; Bikhchandani et al., 2024). In our setting, participants are able to observe a

subset of signals of others, rather than directly observing their actions. Consistent with Grimm

and Mengel (2020), we find that, as signals accumulate, information cascade does not occur,

and the aggregated information from unbiased sources alleviates learning inefficiency, though
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it does not fully eliminate it.

More broadly, our paper speaks to the literature on media bias and its interaction with

confirmation bias, social learning, and polarization. Persistent media biases, driven by con-

sumer preferences and owner interests, are well-documented (Groseclose and Milyo, 2005;

Mullainathan and Shleifer, 2005; Gentzkow and Shapiro, 2010). A growing body of litera-

ture examines how media bias affects beliefs and polarization (DellaVigna and Kaplan, 2007;

Martin and Yurukoglu, 2017). Such biases are not restricted to traditional media, and digital

platforms amplify polarization through algorithmic personalization and recommendation sys-

tems (Flaxman et al., 2016). Proposed interventions include promoting cross-partisan exposure

(Levy, 2021), facilitating probabilistic rather than binary judgments (Guilbeault et al., 2021),

fostering economic self-interest that biases agents toward their initial positions, and adjusting

ideological tolerance thresholds2 (Axelrod et al., 2021), as well as manipulating network for-

mation dynamics (Santos et al., 2021). Nevertheless, the efficacy of these interventions remains

unclear. For instance, Bail et al. (2018) find that exposure to opposing views from opposing

political party on social media can intensify political polarization, while Levy (2021) finds that

exposure to counter-attitudinal information reduces affective polarization without significantly

altering political beliefs. Our experimental findings suggest that biased information leads to

increased polarization, compared with information from unbiased sources. However, merely

making individuals aware about the source bias is insufficient to mitigate the emerging polar-

ization.

In summary, our study contributes to the existing literature in three significant ways. First,

we propose a unified framework designed to systematically investigate how inherent cognitive

biases interact with exogenous information source biases in belief updating and social learning.

A notable strength of our laboratory design lies in its capability to exogenously manipulate both

information source biases and the awareness of such biases. This enables us to evaluate a prac-

tical remedy, raising subjects’ awareness about the biased nature of information sources, and

provides valuable insights relevant to regulating algorithm-driven recommendations prevalent

in the contemporary digital landscape.

2In the Attraction-Repulsion Model in Axelrod et al. (2021), tolerance is the level of ideological differences
that agents find attractive rather than repulsive.

5



Second, our findings present novel evidence that contrasts traditional views of confirmation

bias. Instead of neglecting signals that conflict with pre-existing beliefs, participants in our ex-

periment overreact, assigning disproportionately high weight to surprising, belief-challenging

signals. This observation aligns with recent findings by Charness and Dave (2017) and Kieren

et al. (2020), highlighting a phenomenon wherein certain individuals actively seek out and

overemphasize information contradicting their prior beliefs — a behavior we term “surprise-

driven learning”. Crucially, this learning pattern proves robust and persistent across our ex-

perimental data, but its intensity is moderated when subjects become aware of the source bias,

particularly when signals originate from belief-incongruent sources.

Finally, our analysis reveals nuanced outcomes regarding awareness as a mitigation strat-

egy for biased information sources. Simply informing individuals of source bias proves insuf-

ficient to reduce the negative impacts on learning efficiency and social polarization. In fact,

polarization intensifies, while the overall effect on learning efficiency remains limited. This

is because the attenuation of overreaction to surprising signals is complicated by nature and

context-dependent: although awareness mitigates individuals’ tendency to overreact to surpris-

ing signals, such moderation does not consistently translate into improved accuracy in belief

formation. This is because, in some cases, overreaction may partially offset the distortions

caused by biased sources. This paradox highlights a key insight—awareness of bias moderates

behavioral responses but does not reliably enhance learning outcomes.

The remainder of the paper proceeds as follows. Section 2 presents a conceptual framework

and develops hypotheses; Section 3 details the experimental design and procedures; Section 4

presents our results; and Section 5 concludes.

2 Theoretical Framework and Hypotheses

Formally, consider an ambiguous urn with N balls, either red or blue, with a proportion p ∈

(0, 1) of red balls. Each agent i ∈ I ≡ {1, . . . , I} first draws n balls with replacement,

where n is an odd number. We call this draw a private sample, in which the agent observes

si ∈ {0, . . . , n} red balls. Let MR(si) = 1{si > n
2
} indicate whether her private sample says

6



“red-majority”. It is obvious that s1, . . . , sI are identical and independent random variables

following Binomial(n, p).

After observing her private sample, agent i observes a sequence of T samples from the urn,

which we call partial signals s̃it (t = 1, . . . , T ). Each s̃it is a subsample of size m drawn with-

out replacement from another agent j’s private sample, namely s̃it ∼Hypergeometric(n, sj,m).

Depending on treatment, these partial signals s̃it could be either from an unbiased source, or

from a biased source. In the unbiased case, the source of s̃it is random and sj is from I \ {i}

with equal probability. In this case, since the random source sj follows Binomial(n, p), we

have agent i’s partial signal s̃it
iid∼ Binomial(m, p) for t ∈ {1, . . . , T}. By contrast, in biased

treatments, the source agent j is chosen based on whether j’s initial majority matches (or con-

tradicts) MR(si), the color majority of agent i’s own private signal. This induces positive (or

negative) correlation between si and s̃it. In other words, s̃it is filtered before being observed by

the agent, by MR(s̃it) = 1 or MR(s̃it) = 0. In this case, s̃it ∼Hypergeometric(n, sj,m), where

sj either always comes from S1 = {sj : MR(sj) = 1} or S0 = {sj : MR(sj) = 0}.

Our primary interest lies in understanding the influence of biased signals on learning,

specifically when subjects simply use sample proportion to estimate the population.3 That is,

subjects neglect the potential correlation of signals, pool counts, and make the following naive

estimates: (1) p̂0i = si
n

, based solely on the private signal initially received; (2) p̂new
i =

∑T
t=1 s̃it
mT

,

based solely on the partial signal received afterwards; and (3)p̂both
i =

si+
∑T
t=1 s̃it

n+mT
, combining

both signals. It is worth noting that in all treatments, subjects differ only in their partial signals

s̃it, while their private signals come from the same Binomial distribution. We therefore concen-

trate on p̂new
i in the following analyses, as it isolates the persistent effects of biased information

sources.4 For notation simplicity, we omit both the superscript and subscript, and simply write

partial signals and predictions as s̃t and p̃ hereafter.

First, we consider whether predictions converge to the true state as signals accumulate at

3Using sample proportions as estimators is statistically justified, aligning with the maximum likelihood esti-
mator (MLE). From a Bayesian perspective, it also corresponds to the maximum a posteriori (MAP) estimator
under an uninformative prior. A recent literature in cognitive psychology finds that people often naively assume
that the sample is unbiased and use sample properties to estimate population analogs (Fiedler and Juslin, 2006;
Juslin et al., 2007). In Section 4.1, we demonstrate that subjects’ predictions generally conform to this principle.

4p̂0i corresponds to the case where agents receive multiple private signals and form predictions based solely
on these observations; similarly, p̂both

i reflects the scenario where agents incorporate sequences of both private and
partial signals. However, neither case directly pertains to the primary setting of interest in our study.
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the aggregate level, namely, whether the estimator is unbiased. Not surprisingly, unbiased

information leads to unbiased prediction. On the other hand, signals from red-majority (blue-

majority) sources tend to lead to an overestimation (underestimation) of the true proportion.

Interestingly, when aggregating across different color-majority of private (initial) signals, this

leads to an ex-ante unbiased prediction when signals are from congruent sources, but a biased

prediction when signals are from incongruent sources. The following hypothesis summarizes

these results.

Hypothesis 1. Predictions converge to the true state when signals are drawn from an unbiased

or congruent information source, but not when they originate from an incongruent source.

Proof sketch: if the information source is unbiased, that is, if s̃t is drawn from a random

source without being filtered, then the estimator is unbiased:

E[p̂] =
E[
∑T

t=1 s̃t]

mT
=
T E[s̃]

mT
=
mpT

mT
= p

In contrast, when the information source is biased, whether congruent or incongruent, sub-

sequent signals are always from a truncated population, depending on the color-majority of

the initial private signal. As a result, predictions based on signals from red-majority sources

(M = 1) tend to overestimate the true state, while those from blue-majority sources (M = 0)

tend to underestimate it. More formally, we have

E[p̂|M = 0] < p < E[p̂|M = 1],

which follows from the fact that Cov(s̃i,M) > 0. Specifically,

Cov(s̃i,M) = E[s̃iM ]− E[s̃]× E[M ] = Pr(M = 1)E[s̃|M = 1]−mp× Pr(M = 1)

= Pr(M = 1) (E[s̃|M = 1]−mp) > 0,

which implies E[p̂|M = 1] > p, and the inequality for M = 0 follows analogously.

The discussion above pertains to a given agent whose color-majority M ∈ {0, 1} is fixed

based on the private signal observed. The ex ante distribution of M across agents depends on
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the true state p. As a result, the unconditional expectation E[p̂] varies across different types

of biased sources. If signals are drawn from congruent sources, namely color-majority that

matches the color-majority of the agent themselves, then by the law of total expectation, we

have E[p̂] = p. Although each agent’s belief is biased conditional on M , these biases cancel

out at the population level, yielding an unbiased aggregate prediction. In contrast, when signals

are drawn from incongruent sources, the law of total expectation no longer applies. Therefore,

E[p̂] 6= p almost surely. �

Next, we consider two measures of learning efficiency, which we refer interchangeably as

learning accuracy: mean squared error MSE = E[(p̂− p)2] and mean absolute error MAE =

E[|p̂−p|], under the following three cases: 1) signals are from unbiased and random information

sources, 2) signals are from congruent information sources, and 3) signals are from incongruent

information sources. We can obtain the following results.

Hypothesis 2. Learning efficiency decreases under biased information sources, whether con-

gruent or incongruent, than under unbiased random source.

The above results mirror the ranking observed in Hypothesis 1 but offer a distinct insights.

Hypothesis 1 focuses on information aggregation at the population level, where positive and

negative errors can cancel out each other. Under such circumstances, congruent information,

despite being biased, can still produce an accurate aggregate prediction of the true state, sim-

ilar to that from an unbiased random information source. In contrast, Hypothesis 2 empha-

sizes individual-level learning accuracy or belief bias, where it is necessary to account for the

magnitude of errors (e.g., through squared or absolute deviations), thus preventing directional

errors from offsetting one another. The results indicate that, consistent with Hypothesis 1, the

unbiased random information source yields the highest learning efficiency. However, in this

individual-level context, congruent sources no longer match the efficiency of unbiased sources.

In addition to learning efficiency, another focus of our study is opinion polarization, mea-

sured by the dispersion (variance) of predictions. Although a biased (e.g. congruent) informa-

tion source can sometimes still lead to an accurate average prediction at the aggregate level,

systematically biased information shifts individual predictions (i.e. conditional expectations)

away from the true state, making the distribution of opinions more dispersed. We summarize
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the hypothesis regarding polarization as follows.

Hypothesis 3. Polarization increases under biased information sources, whether congruent or

incongruent, than under unbiased random source.

Proof. Since statements in Hypotheses 2 and 3 are closely related, we provide a unified proof.

We first briefly summarize the setup and notation, followed by detailed calculations and com-

parisons of variance, mean squared error, and mean absolute error.

Setup

Each agent receives a private signal s1, . . . , sI
iid∼ Binomial(n, p). Let si0 ∼ Binomial(n, p)

denote the private signal of the agent of interest, which partition the set of signals {s1, . . . , sI}

into two groups: S1 = {sj : sj >
n
2
} and S0 = {sj : sj ≤ n

2
}. Subsequent partial signals sj are

selected according to the following rules, under three distinct scenarios:

1. Unbiased: sj is chosen uniformly from S1 ∪ S0.

2. Congruent: If si0 ≤ n
2
, then sj is uniformly chosen from S0; otherwise, from S1.

3. Incongruent: If si0 ≤ n
2
, sj is uniformly chosen from S1; otherwise, from S0.

Given the selected source sj , partial signals s̃1, . . . , s̃T
iid∼ Hypergeometric(N, sj,m) are drawn,

leading to the estimator defined as 1
Tm

∑T
t=1 s̃t. To distinguish among these three scenarios, we

denote their respective estimators as p̂U, p̂C, and p̂I.

Variance

In the Unbiased scenario, s̃t
iid∼ Binomial(m, p), thus:

Var(p̂U) =
1

(Tm)2
Var(

∑
s̃t) =

1

T 2m2
(Tmp(1− p)) =

p(1− p)
Tm

. (1)

In the Congruent scenario, we first calculate the conditional variance

Var(s̃t|sj) = m
sj
n

(1− sj
n

)
n−m
n− 1

.
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Applying the law of total variance (on the sum s̃ =
∑T

t=1 s̃t), we obtain

Var(s̃) = E[Var(s̃|sj)] + Var(E[s̃|sj])

= E[Tm
sj
n

(1− sj
n

)
n−m
n− 1

] + Var(Tm
sj
n

).

Since sj ∼ Binomial(n, p), we have E[sj] = np, Var(sj) = np(1 − p), and E[
sj
n

(1 − sj
n

)] =

p(1− p)(1− 1
n
). Direct computation yields:

E[Var(s̃|sj)] = Tm
n−m
n− 1

p(1− p)(1− 1

n
) = Tm

n−m
n

p(1− p),

and

Var(E[s̃|sj]) = Var(Tm
sj
n

) = T 2m2Var(sj)
n2

= T 2m2p(1− p)
n

.

Putting together, we have

Var(p̂C) = Var(
s̃

Tm
) =

1

T 2m2
Var(s̃)

=
1

T 2m2

(
Tm

n−m
n

p(1− p) + T 2m2p(1− p)
n

)
=

p(1− p)
nmT

(n−m+mT ) =
p(1− p)

T

(
1

m
+
T − 1

n

)
. (2)

Comparing Equation (1) with Equation (2), it immediately follows that Var(p̂U) < Var(p̂C).

For the incongruent scenario, similar calculations lead to:

Var(p̂I) =
1

(Tm)2
Var(s̃) =

1

(Tm)2
[T E[Var(s̃t|sj)] + T 2 Var(E[s̃t|sj])]

=
1

mT
E[
n−m
n− 1

sj
n

(1− sj
n

)] + Var(
sj
n

).
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Therefore,

Var(p̂I)− Var(p̂U) =
1

mT
E[
n−m
n− 1

sj
n

(1− sj
n

)] + Var(
sj
n

)− p(1− p)
mT

= Var(
sj
n

) +
1

mT

[
n−m
n− 1

E[
sj
n

(1− sj
n

)]− p(1− p)
]

= Var(
sj
n

) +
1

mT

[
n−m
n− 1

(
p(1− p)− Var(

sj
n

)
)
− p(1− p)

]
(3)

= Var(
sj
n

)

(
1− n−m

(n− 1)Tm

)
− p(1− p)

Tm

m− 1

n− 1

=
p(1− p)

n

(
1− n−m

(n− 1)Tm

)
− p(1− p)

Tm

m− 1

n− 1

=
p(1− p)(T − 1)

nT
> 0,

where Equation (3) use the identity that E[
sj
n

(1− sj
n

)] = p(1−p)−Var( sj
n

), which is true because

E[
sj
n

] = p and Var( sj
n

) = E[(
sj
n

)2]− E[
sj
n

]2. This completes the proof that Var(p̂U) < Var(p̂I)

Mean Square Error (MSE)

Both p̂U and p̂C are unbiased estimators, implying their MSEs equal their variances. Con-

sequently, Var(p̂U) < Var(p̂C) ⇐⇒ MSE(p̂U) < MSE(p̂C).

For the Incongruent estimator, since bias is present, we have:

MSE(p̂I) = Var(p̂I) + (E[p̂I]− p)2 ≥ Var(p̂I) > Var(p̂U) = MSE(p̂U).

Mean Absolute Error (MAE)

We employ a normal approximation via the central limit theorem, obtaining:

p̂U ∼ N (p, σ2
U), p̂C ∼ N (p, σ2

C) and p̂I ∼ N (p+ µ, σ2
I ),

with µ = E[p̂I]− p, and inequalities σ2
U < σ2

C , σ2
U < σ2

I .

For the comparison of MAE between p̂U and p̂C, notice that p̂U − p and p̂U − p follow a

normal distribution with zero mean, we have

MAE(p̂U) = E[|p̂U − p|] = σU

√
2

π
,

12



and similarly, MAE(p̂C) = σC

√
2
π

, thus clearly MAE(p̂C) > MAE(p̂U).

For p̂I, using the similar technique, we have p̂C ∼ N (µ, σI). This gives out

MAE(p̂I) = E[|p̂I − p|] = σI

√
2

π
e
− µ2

2σ2
I + µ

[
2Φ

(
µ

σI
− 1

)]
≡ g(µ, σI),

where Φ(·) denotes the standard normal CDF. It is easy to see that g(µ, σI) is an even function

in µ, making it without loss of generality to assume µ ≥ 0. Taking partial derivatives, one can

show that ∂g(µ,σI)
∂µ

and ∂g(µ,σI)
∂σI

are both positive. Consequently,

MAE(p̂I) = g(µ, σI) > g(0, σI) > g(0, σU) = MAE(p̂U),

concluding the proof.

In addition to examining learning outcomes such as accuracy and polarization, we also

investigate how individuals update their beliefs in response to new information. Even in the

absence of source bias, belief updating often departs from the rational benchmark due to cog-

nitive limitations. Two well-documented deviations are confirmation bias, where individuals

underweigh information that contradicts their prior beliefs, and surprise-driven updating, where

individuals overreact to unexpected signals. Both patterns have empirical support in the litera-

ture (e.g., Charness and Dave, 2017; Levy and Razin, 2019; Kieren et al., 2020), but it remains

unclear which tendency will dominate in our experimental setting, where individuals receive

signals sequentially and infer an underlying state. To address this ambiguity, we formulate the

following competing hypotheses:

Hypothesis 4a. Individuals exhibit confirmation bias during belief updating.

Hypothesis 4b. Individuals exhibit surprise-driven updating bias in the learning process.

Lastly, we consider the effect of agent awareness of source bias. Intuitively, if subjects are

sufficiently sophisticated, awareness of source bias enables them to correct for the systematic

deviation from the truth induced by the biased source, thereby debiasing the estimator. At the

same time, awareness about the bias include more information available to the agent, hence
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resulting in an estimator with both lower opinion dispersion (variance) and lower learning in-

efficiency (MSE), according to the Rao-Blackwell theorem.5

Hypothesis 5. When the information source is biased, making individuals aware of the bias

improves learning efficiency and reduces opinion polarization.

3 Experimental Design

3.1 Tasks

The experiment consisted of two parts. In Part 1, subjects completed the main task — the urn

inference task — three times. In Part 2, subjects completed the Monty Hall task, designed to

assess adherence to Bayesian updating, and a choice list task (Holt and Laury, 2002) to elicit

risk preferences.6

In each urn inference task, there was a virtual ambiguous urn containing 99 balls, either

red or blue. Subjects did not know the color composition and were required to estimate the

number of red balls based on 11 sequential draws. These draws occurred in two stages.

In the first period, the computer randomly drew 5 balls from the urn with replacement, pro-

viding each subject a private signal. After observing their private signal (namely, the color of

their own five colored balls), subjects privately reported their prediction about the number of

red balls. In each of periods 2–11, subjects observed a partial signal, consisting of 3 balls ran-

domly selected without replacement from another subject’s private signal in period 1. For each

period, the identity of the subject providing this partial signal was randomly selected from one

of three pools, depending on treatment: (1) all other subjects, (2) subjects with congruent initial

predictions (agreeing on red-majority or blue-majority status), or (3) subjects with incongruent

initial predictions (disagreeing on red-majority or blue-majority status).7

5Specifically, let X be data available, δ(X) is any square-integrable estimator of a parameter θ, and T (X) is
any statistic, then the Rao-Blackwellized estimator δ∗(T ) = E[δ(X)|T (X)] have both lower variance and MSE
than the original estimator δ(X). One can prove these results using law of total variance, law of total expectation,
and Jensen’s inequality.

6Materials such as experimental instructions, screenshots of experimental interfaces and quiz questions are
available in the Supplementary Materials.

7In the experiment, we mitigated potential confounding effects from group identity by framing the task as
follows: first-period predictions of the number of red balls were classified into two intervals, [0, 49] and [50, 99].
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After observing each partial signal (namely, the color of the three balls), subjects privately

reported their updated prediction about the number of red balls.8 All predictions across the

11 periods were incentivized following the quadratic scoring rule: payoff = 150 − 0.015 ×

(#actual red balls − #predicted red balls)2, with one randomly selected period determining

the payoff for each urn.

Additionally, at the end of period 11, subjects reported the maximum perceived discrepancy

between their final estimate and the actual number of red balls, reflecting their uncertainty

about their predictions. This response, along with the post-experiment survey, received a flat

payment.

The urn inference task was repeated three times in Part 1, each time with a different color

composition (55, 44, and 36 red balls).9 The order of these compositions followed a Latin

square design, with each treatment’s three sessions randomly assigned to the three different

orders. Feedback regarding actual urn compositions was withheld until the experiment con-

cluded.

In the Monty Hall task, subjects were informed that one of three doors concealed a prize

of 5 Yuan, while the other two concealed 1 Yuan each, with equal probability. After subjects

selected one door, the computer revealed one of the unchosen doors containing 1 Yuan. Subjects

then chose to either stick with their initial door or switch to the remaining unopened door.

Payments in both the Monty Hall task and the risk-choice task in Part 2 depended on subjects’

choices.

3.2 Treatments

The experiment included a baseline and a 2 × 2 factorial design. In the baseline treatment,

the partial signals observed in period 2–11 were drawn from another subject randomly selected

from the entire session, irrespective of congruence in their initial predictions in period 1.

In the factorial design, treatments varied along two dimensions: the source of the partial

In the congruent (incongruent) treatments, partial signals were from subjects whose predictions fell within the
same (different) interval. See Section B in the Supplementary Materials for further details.

8When participants made predictions in periods 2–11, information on their own previous predictions and sig-
nals was displayed on the decision screen.

9We varied the ratio to test its effect. Section A in the Supplementary Materials shows that our main results
are robust across these ratios.
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signal (Congruent or Incongruent) and awareness of information bias (Aware or Unaware).

In the Congruent treatments, subjects observed partial signals from others whose initial pre-

dictions were similar (both predicting red-majority or blue-majority). To avoid confounding

group-identity effects, instructions avoided using terms like “group” or “team”, instead de-

scribing signals as originating from subjects with first predictions in the same numerical range

([0, 50) or [50, 99]). In the Incongruent treatments, partial signals were drawn from subjects

with differing initial predictions. Thus, both Congruent and Incongruent treatments provided

systematically biased signals compared to the baseline.

The second treatment dimension concerned subjects’ awareness of the biased sources. In

Aware treatments, subjects were informed explicitly about the congruence or incongruence of

signal sources. In Unaware treatments, subjects were not informed about this bias, although

signals remained biased, coming from congruent or incongruent sources. Table 1 summarizes

these treatments and lists the number of sessions and subjects per treatment.

Table 1: Summary of Treatment Design

Treatment Source Aware of Source # Sessions # Subjects

Baseline Random Awarea 3 72
CU Congruent Unaware 3 72
IU Incongruent Unaware 3 72
CA Congruent Aware 3 72
IA Incongruent Aware 3 72
a In Baseline, subjects were informed that the balls in Periods 2–11 were from a ran-

dom participant (other than themselves) in the session.

3.3 Procedures

The experiment took place at the Laboratory for Economic Behaviors and Policy Simulation

(LEBPS) at Nankai University during February and March 2023. Participants were recruited

from the lab’s standing subject pool, which consists of undergraduate and graduate students

from various disciplines at Nankai University. No subject participated in the experiment more

than once.

Upon arrival, subjects were randomly assigned to computer terminals by drawing a card

from a pile of numbered cards. After being seated, they received written instructions for Part
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1 of the experiment. The experimenter read the instructions aloud, after which subjects com-

pleted a set of comprehension questions. Only after all participants had answered all questions

correctly did the experiment proceed. Instructions for Part 2 were distributed upon the comple-

tion of Part 1. Following Part 2, participants completed a questionnaire collecting demographic

information (e.g., age, gender, past experiment experience, statistics knowledge), after which

they are displayed with their final earnings on screen and received payment privately on site.

The experiment was computerized and implemented using oTree (Chen et al., 2016).

In total, we conducted 15 experimental sessions involving 360 subjects. The average dura-

tion of a session was approximately 90 minutes, and subjects earned, on average, 76.6 Chinese

Yuan (roughly 11.1 US dollars), including a 10 Yuan participation fee. Summary statistics for

participant characteristics, including means and standard deviations, are reported in Table 2.

Table 2: Subject Characteristics by Treatment

Characteristics Treatment

Baseline CU IU CA IA

Age 22.18 (1.97) 22.13 (1.88) 22.01 (1.87) 21.79 (1.54) 21.99 (1.66)
Male 0.25 (0.44) 0.38 (0.49) 0.38 (0.49) 0.41** (0.5) 0.35 (0.48)
Experiment Experience 0.65 (0.48) 0.56 (0.5) 0.56 (0.5) 0.65 (0.48) 0.61 (0.49)
Statistics Knowledge 0.74 (0.44) 0.68 (0.47) 0.64 (0.48) 0.7 (0.46) 0.82 (0.39)
Bayesian Rationality 0.1 (0.3) 0.12 (0.33) 0.1 (0.3) 0.15 (0.36) 0.08 (0.28)
Risk Preference 6.75 (1.68) 7.26 (1.81) 7.07 (1.7) 6.82 (1.78) 6.83 (1.76)
Lack of Confidence 22.1 (14.13) 21.21 (12.21) 22.62 (12.92) 20.51 (14.02) 20.85 (13.11)

Notes: The table reports the mean (standard deviation) of each variable across treatments, based on 72 subjects. Male,
Experimental Experience, and Statistics Knowledge represent the self-reported fractions of male participants, participants who
have previously participated in other experiments, and participants who have studied a probability or statistics-related course,
respectively. Bayesian Rationality denotes the fraction of participants who correctly answered the incentivized Monty Hall
task. Risk Preference refers to the switching point (ranging from 1 to 10) in the multiple price list task. Lack of Confidence
measures the average perceived maximum difference between the participant’s final prediction in the 11th period and the actual
number of red balls in the urn across three urns. All characteristics do not exhibit statistically significant differences between
the baseline and other treatments at the 5% level, except for the fraction of male participants in the CA treatment.

Notably, our experimental design diverges from classic social learning experiments in two

aspects. First, our subjects observe sequences of partial signals from others rather than observ-

ing their actions. This design choice is motivated by two primary reasons. Firstly, it better

represents real-world scenarios in which individuals are influenced primarily by information

(news feed, tweets, video clips etc.), rather than observable actions, from diverse sources. Sec-

ondly, as demonstrated by Agranov et al. (2022), direct observation of signals enhances infor-
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mation aggregation when signals originate from random and unbiased sources, enabling clearer

analysis of the effects introduced by biased sources and subjects’ awareness of such biases.

A second key distinction is the use of a non-binary urn inference task with non-binary

signals. This element is indispensable for our study because a binary signal setting would pre-

clude understanding how identical signals might be interpreted differently when originating

from distinct sources. In our setup, rational agents observing a partially informative signal —

for instance, two blue balls and one red ball — from another subject who previously predicted

more red balls10, can infer that the remaining unrevealed balls are likely red. Hence, the actual

interpretation becomes richer (two blue balls out of a total of three revealed balls), captur-

ing nuances unattainable in a binary framework. Unlike binary-state settings where subjects

must report probabilistic beliefs requiring complex Bayesian reasoning (see, e.g., Zou and Xu,

2023), our non-binary prediction task simplifies cognitive demands, offering a clearer and more

intuitive decision-making context for participants.

4 Results

4.1 Descriptive results

We first analyze how subjects formed beliefs and made their first predictions based on their

private signals (five balls) across all treatments. According to our assumption in Section 2,

without prior information, subjects would estimate the urn’s composition by multiplying the

observed proportion of red balls in their sample by 99. Figure 1 illustrates the relationship

between observed and predicted proportions.

The figure shows that, on average, subjects predict a higher number of red balls in the urn

when observing more red balls in their private signal. However, their predictions systemati-

cally deviate from direct proportionality, shifting toward the midpoint (50). This adjustment is

especially pronounced in extreme cases (samples consisting entirely of red or blue balls) and

can be explained by risk aversion and behavioral attenuation (Enke and Graeber, 2023; Enke

et al., 2024).
10Though predictions in period 1 are not directly observed, agents could still deduce others’ period-1 prediction

if they are aware that other players made congruent or incongruent predictions with themselves.
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Figure 1: Average Prediction by Signals in Period 1

Note: This figure plots the average number of red balls predicted by subjects against the actual number observed
in 5 balls drawn in the first period. Error bars indicate 95% confidence intervals. The red line depicts theoretical
predictions from a proportionist, an individual who infers the population composition based on the sample pro-
portion.

−10

−5

0

5

10

0 1 2 3
Red Balls in Partial Signal

A
ve

ra
ge

 C
ha

ng
e 

in
 P

re
di

ct
io

n

Treatment
Baseline CA CU

IA IU

Figure 2: Average Prediction Adjustments by Signals in Periods 2–11

Notes: This figure shows the average change in predictions from the previous period following the observation
of a new signal (a draw of three balls) in Periods 2–11 across treatments. Error bars indicate 95% confidence
intervals.
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Next, Figure 2 depicts how subjects adjusted their predictions over periods 2–11 in response

to partial signals (three balls) from other subjects. Subjects decreased their predictions upon

observing a blue-majority signal (0 or 1 red ball) and increased them following a red-majority

signal (2 or 3 red balls). Moreover, the magnitude of adjustment grew with signal extremity —

more pronounced adjustments occurred with stronger signals. Among all treatments, partici-

pants in the Baseline treatment exhibit the strongest reactions to new partial signals, followed

by those in the IU treatment. In contrast, reactions in the CA and CU treatments are sub-

stantially attenuated — approximately half the magnitude observed in the Baseline treatment.

This attenuation arises for two reasons. First, signals from congruent sources, compared to

those from incongruent sources, are more likely to align with participants’ pre-existing beliefs.

This signal alignment reinforces previous predictions and therefore results in smaller belief ad-

justments. Second, awareness of the biased source also moderates reactions to signals: when

participants are informed about the biased information sources, they exhibit greater skepticism

and adjust their beliefs more cautiously, dampening their reactions to new signals. These two

facts together lead to the strong reactions to new partial signals in the IU treatment.

Figure 3 plots participants’ average predictions across treatments for different urn composi-

tions, offering an overview of learning accuracy at the aggregate level. As shown in the figure,

and broadly consistent with Hypothesis 1, predictions tend to converge toward the true state

(i.e., the number of red balls, presented as red dashed horizontal lines) when signals are drawn

from an unbiased information source (Baseline) or a congruent biased source (CU), but not

when signals come from an incongruent biased source (IU). Introducing awareness of source

bias reduces the overall prediction error, particularly under incongruent information, but the

magnitude of this improvement is not always significant.

We now look at the paper’s central question: how do learning inefficiency (the difference

between subjects’ predictions and the first-best benchmark11) and polarization (measured as

the standard deviation of predictions (Fryer Jr et al., 2019; Santos et al., 2021) within a ses-

sion) evolve across periods and treatments? Figure 4a illustrates the evolution of learning

11Because each session involves a finite number of participants and a finite draw of 5 balls from the urn, the
benchmark prediction is calculated based on the complete set of signals observed by all participants in the same
session during the first period.
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Figure 3: Average Prediction Dynamics by Urn in Periods 2–11

Notes: This figure presents the average predictions in Periods 2–11 across treatments for different urn composi-
tions. The three rows correspond to urns containing 36, 44, and 55 red balls, respectively. The horizontal dashed
red line denotes the true state in each case. Error bars indicate 95% confidence intervals.

inefficiency. Initially (period 1), all treatments exhibit similar levels of inefficiency due to the

absence of biased partial signals. However, as partial signals accumulate (in periods 2–11),

learning inefficiency gradually declines only in the baseline treatment. By the final period,

learning inefficiency in the baseline treatment where signals are from random sources is sig-

nificantly lower than those in the other four treatments, where information was biased. Among

these four treatments, learning inefficiency remains at a relatively high level, irrespective of

subjects’ awareness of the biased source.

Similarly, Figure 4b shows polarization dynamics. Initially (period 1), polarization levels

are comparable across treatments. Over subsequent periods, polarization decreases only in the
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Figure 4: Learning inefficiency and Polarization Dynamics in different Treatments

Notes: Figure (a) plots the dynamics of learning inefficiency, measured as the absolute difference between sub-
jects’ predictions and the first-best benchmark, and figure (b) plots the dynamics of polarization, measured as the
standard deviation of subjects’ predictions within the same session, over 11 periods across treatments. Error bars
indicate 95% confidence intervals.

baseline treatment. In contrast, biased treatments display persistent polarization. Notably, the

first partial signal (period 2) reduces polarization in incongruent treatments, resembling the

baseline. In contrast, polarization in congruent treatments remains stable in all period 2–11.

Overall, incongruent treatments (IA, IU) exhibit lower polarization than congruent treatments

(CA, CU) but still exceed baseline levels (Wilcoxon rank sum test, p < 0.01)12. Interestingly,

subjects unaware of the bias exhibit lower polarization compared to subjects aware of the bias

(IA v.s. IU p = 0.06, CA v.s. CU p < 0.01).

4.2 Surprising versus Confirming Signals

We begin by examining how participants update their beliefs in the Baseline Treatment, where

partial signals received in period 2–11 are randomly drawn and unbiased. Even without source

bias, individuals often exhibit a cognitive tendency known as confirmation bias. Considering

this, we analyze how newly observed signals are processed relative to participants’ beliefs

in the previous period and examine the resulting impacts on learning inefficiency and belief

polarization. Specifically, we categorize signals as confirming if they align with participants’

12All p-values reported in the main text are obtained from two-sided Wilcoxon rank-sum tests, unless explicitly
stated otherwise.
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previous predictions (e.g., a participant previously predicted a red-majority and observes a new

signal suggesting the same). Conversely, signals that contradict previous predictions (e.g., a

participant previously predicted a red-majority but observes a signal indicating a blue-majority)

are defined as surprising.

To quantify how participants respond to confirming and surprising signals, we devise an

outcome variable, Interpreted Red Balls (IR), which is the implied signal that a proportionist13

would observe in order to make the updated prediction. More formally, assuming that partici-

pants’ prediction was pt−1 in the last period, and predicted pt after observing a partial signal of

3 balls and denoting Nt−1 to be the total number of balls observed up to (and including) period

t− 1, then the Interpreted Red Balls IR satisfies:

pt =

Total red balls︷ ︸︸ ︷
pt−1

99
Nt−1 + IR

Nt−1 + 3︸ ︷︷ ︸
Total balls observed

× 99,

which implies IR = pt
99

(Nt−1 + 3)− pt−1

99
Nt−1.

Panel A in Figure 5 illustrates the difference between the number of red balls participants

interpret from each signal and the actual number observed, separately for confirming and sur-

prising signals in Baseline Treatment. Since our primary focus is how participants respond to

new signals after forming a belief based on existing private information, our plot focuses on

Period 2–11. This applies to all remaining analyses hereafter, unless explicitly specified other-

wise. Under confirming signals (left panel), participants’ interpretations remain closely aligned

with the actual data, hence the discrepancy fluctuate around zero, suggesting their belief up-

dating is approximately proportionist. However, under surprising signals (right panel), partici-

pants exhibit systematic overreaction to such signals: those previously leaning toward red tend

to over-interpret blue signals, while those previously favoring blue tend to over-interpret red

signals. These deviations grow over time, reflecting systematic distortions in how participants

process surprising information.

Panel B of Figure 5 demonstrates how surprising-driven belief updating bias affects learn-

13We use the word proportionist to refer to someone who predict the population based on (cumulative) sample
proportion.
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Panel A Interpretation of Observed Red Balls
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Figure 5: Interpretation of Observed balls, learning inefficiency, and polarization in Baseline
Treatment

Notes: Panel A shows the dynamics of the average gap between the number of red balls observed and the in-
terpreted number (inferred from predictions in Periods t − 1 and t). The left subplot corresponds to confirming
signals (aligned with predictions in t − 1); the right subplot to surprising signals (contradicting predictions in
t− 1). Blue and red lines indicate the majority color in participants’ predictions in Period t− 1. Panel B plots the
dynamics of learning inefficiency (green, solid lines) and polarization (purple, dashed lines) for confirming (left)
and surprising (right) signals.

ing inefficiency and polarization. We define learning inefficiency (illustrated in the figure with

green solid lines) by calculating the deviations of reported beliefs from the benchmark (first

best). Because participants in a session only received a finite draw of 5 balls from the urn, we

calculate the benchmark prediction based on the full set of signals visible to all participants

in the same session and urn in the first period. The gap between each participant’s prediction

and benchmark prediction is defined as learning inefficiency. The figure reveals that, regardless

of whether signals are confirming or not, learning inefficiency declines over time, reflecting

effective aggregation of unbiased information. Polarization, measured as the standard devia-
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tion of participants’ predictions within each session-urn-period cell and marked in the figure

with purple dashed lines, exhibits a similar pattern. Despite early heterogeneity, participants’

disagreement on the state gradually narrowed as more unbiased signals are accumulated, re-

gardless whether signals are confirming or surprising.

To sum up, graphs in Figure 5 indicate that while surprising signals tend to elicit stronger,

and often biased, individual responses in the short run, the random nature of signal draws

ensures that such biases do not systematically accumulate. Since surprising signals occur in

both directions (namely, observing “blue” while believing “red”, or vice versa) across periods,

individual overreactions tend to offset one another over time. As a result, even though ball in-

terpretation is systematically biased when signals are surprising, both learning inefficiency and

belief polarization converge toward those observed under confirming signals, demonstrating

that reasonably efficient collective learning can still emerge even in the presence of persistent

individual-level distortions. Below we summarize these results relating to Hypothesis 4.

Result 1. Participants do not exhibit confirmation bias; instead, they overreact to surprising

signals, reflecting a surprise-driven updating bias. However, as unbiased signals accumulate,

both learning inefficiency and belief polarization diminish over time, despite this bias.

At first glance, our findings may appear surprising, as participants exhibit a surprise-driven

learning bias rather than the more frequently documented confirmation bias. It is worth not-

ing that confirmation bias predominantly arises in contexts involving strongly held, personally

motivated, or identity-related beliefs, where individuals typically discount or underweight con-

tradictory information to maintain psychological consistency or self-enhancement (Nickerson,

1998). Conversely, surprise-driven learning bias is more prevalent in scenarios characterized

by relatively neutral, short-term beliefs, where participants often attribute disproportionate sig-

nificance to unexpected signals, leading them to over-adjust their beliefs in response to dis-

confirming evidence (Kuhnen, 2015; Coutts, 2019; Charness et al., 2021). In our experiment,

participants engage in an incentivized urn inference task, forming short-lived beliefs without

substantial personal or ideological attachment. Therefore, the observed pattern of overreaction

to surprising signals aligns closely with existing literature.

Next, we quantify how surprising signals affect belief updating, with the following regres-
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sion model:

Yist = α0 + α1 Surprisingist + θXi + λt + εist (4)

where Yist denotes one of three outcome variables: (1) signal interpretation, defined as the

difference between the number of red balls participant i interprets from the signal and the

actual number observed in period t; (2) learning inefficiency, defined as the absolute deviation

between a participant’s prediction and the benchmark prediction, which is calculated based on

the full set of signals visible to all participants in the same session and urn in the first period; and

(3) belief polarization, measured as the standard deviation of predictions within each session-

urn-period cell. For signal interpretation, we estimate separate regressions for participants with

red-leaning and blue-leaning predictions in the last period to allow for asymmetric responses to

surprising signals. For learning inefficiency and belief polarization, we estimate this equation

using the full sample in Baseline Treatment. The key independent variable Surprisingist is a

dummy equal to 1 if the signal contradicts the participant’s previous belief and 0 otherwise.

The vector of controls Xi includes demographic variables such as age (Age) and a male

dummy (Male), as well as a dummy for whether the subject has participated in similar exper-

iments before (Experiment experience) and whether they have taken statistics-related courses

(Statistics knowledge). We also account for cognitive and behavioral traits including perfor-

mance on the Monty Hall task (Bayesian rationality), the switching point in the risk choice list

(Risk preference), and the participant’s reported expectation of their maximum prediction error

(Lack of confidence). We also include period fixed effects, λt, to account for common learning

dynamics over time. Standard errors are clustered at the participant level.

Table 3 reports OLS regression results14 examining how participants interpret signals when

faced with surprising information. The dependent variable is the difference between the number

of red balls participants interpret from each signal and the actual number observed. Columns

(1)–(3) focus on participants who predicted more red balls in the previous period, while Columns

(4)–(6) focus on those who previously predicted more blue balls. Across all specifications, the

coefficient on the Surprising signal dummy is large and statistically significant. Participants

14Unless otherwise noted, all regression analyses in this paper are estimated using OLS.
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Table 3: Interpretation of observed balls with random signals

VARIABLES
Dependent Variable: Interpreted red balls - Observed red balls

Predict more red balls in the previous period Predict more blue balls in the previous period

(1) (2) (3) (4) (5) (6)

Surprising signal -0.842*** -0.809*** -0.831*** 0.910*** 0.916*** 0.866***
(0.273) (0.275) (0.280) (0.286) (0.280) (0.273)

Age 0.0717 0.0690 -0.0400 -0.0406
(0.0993) (0.0972) (0.0331) (0.0324)

Male 0.396 0.392 -0.159 -0.165
(0.259) (0.258) (0.186) (0.189)

Experiment experience -0.114 -0.0755 0.103 0.115
(0.249) (0.243) (0.187) (0.187)

Statistics knowledge -0.639 -0.653 0.533** 0.513**
(0.505) (0.496) (0.210) (0.208)

Bayesian rationality -0.584 -0.553 0.506 0.520
(0.415) (0.409) (0.375) (0.382)

Risk preference 0.00690 0.00943 0.0503 0.0538
(0.0534) (0.0526) (0.0580) (0.0587)

Lack of confidence -0.0300*** -0.0297*** 0.0274*** 0.0272***
(0.00912) (0.00889) (0.00719) (0.00726)

Observations 919 919 919 1,241 1,241 1,241
R-squared 0.031 0.083 0.107 0.040 0.093 0.110
Period FEs NO NO YES NO NO YES

Notes: The first three columns report the results when participants predict more red balls in the previous period, while the
last three columns report the results when participants predict more blue balls in the previous period. Columns (1) and (4)
report the results without individual characteristics, columns (2) and (5) report the results controlling for several individual
characteristics, and columns (3) and (6) report the results further controlling for period fixed effects. Observations are from
the Baseline. Standard errors clustered at the participant level are reported in parentheses.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

with red-leaning priors tend to underinterpret red signals, reporting roughly 0.8 fewer red balls

than observed, while those with blue-leaning priors tend to overinterpret them by about 0.9.

This pattern indicates that surprising signals systematically distort interpretation: individuals

overweigh information that contradicts their existing beliefs.

Somewhat unexpectedly, participants with stronger statistical training exhibit even greater

distortions in response to surprising signals. Rather than mitigating misinterpretation, higher

cognitive sophistication appears to amplify overreaction to surprising signals. In addition, in-

dividuals who report lower confidence (i.e., a higher expected maximum prediction error) also

exhibit significantly greater distortion in signal interpretation. This suggests that lack of confi-

dence does not necessarily promote caution or accuracy; instead, it may reflect greater suscep-

tibility to misleading or surprising information.

Table 4 examines the effects of surprising signals on learning inefficiency and belief po-
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Table 4: Learning efficiency and polarization with random signals

VARIABLES Dependent Variable: abs(Predict - Best guess) Dependent Variable: sd(Predict)

(1) (2) (3) (4) (5) (6)

Surprising signal 0.146 0.142 -0.548 0.643*** 0.636*** -0.116
(0.416) (0.402) (0.433) (0.0825) (0.0835) (0.0884)

Age 0.132 0.140 0.0252 0.0338
(0.205) (0.205) (0.0291) (0.0292)

Male 1.048 1.025 0.0254 -0.000587
(1.334) (1.342) (0.123) (0.117)

Experiment experience 0.428 0.442 0.126 0.141
(1.178) (1.180) (0.143) (0.139)

Statistics knowledge 1.199 1.184 -0.0629 -0.0787
(1.477) (1.481) (0.143) (0.135)

Bayesian rationality 0.891 0.879 -0.191 -0.203
(2.488) (2.498) (0.178) (0.178)

Risk preference 0.180 0.177 -0.0744** -0.0779**
(0.266) (0.268) (0.0345) (0.0345)

Lack of confidence 0.0495* 0.0501* -0.00609 -0.00548
(0.0291) (0.0293) (0.00479) (0.00472)

Observations 2,376 2,376 2,376 2,376 2,376 2,376
R-squared 0.000 0.019 0.042 0.017 0.022 0.335
Period FEs NO NO YES NO NO YES

Notes: The first three columns report the results for learning efficiency, while the last three columns report the
results for belief polarization. Columns (1) and (4) report the results without individual characteristics, columns
(2) and (5) report the results controlling for several individual characteristics, and columns (3) and (6) report the
results further controlling for period fixed effects. Observations are from the Baseline. Standard errors clustered at
the participant level are reported in parentheses.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

larization in Baseline Treatment. The results show that surprising signals have limited effects

on both learning inefficiency and polarization. Across Columns (1) to (3), the coefficients on

surprising signals for learning inefficiency (measured by the absolute difference between pre-

dictions and best guesses) are small and statistically insignificant, suggesting that surprising

signals do not systematically improve or impair prediction accuracy.

In terms of belief polarization (Columns 4 to 6), the effect of surprising signals appears large

and positive when period fixed effects are not controlled (e.g., 0.643 in Column 4, significant at

the 1% level). This is consistent with earlier findings from Figure 5, where polarization appears

higher under surprising signals. However, since the signals are randomly assigned and thus not

systematically aligned with participants’ existing beliefs, this initial increase reflects temporary

overreactions rather than persistent belief divergence.

Once period fixed effects are included (Column 6), the coefficient on surprising signals
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becomes smaller (–0.116) and statistically insignificant, indicating that the initial polarization

effect is largely driven by period-specific variation. This suggests that over time, the effects of

surprising signals average out, and participants do not become systematically more polarized

under random information. In other words, while surprising signals may temporarily elevate

polarization, they do not produce lasting divergence compared to confirming signals.

Among the control variables, risk preference exhibits a significant negative association with

belief polarization in Columns (5) to (6), indicating that greater risk aversion is linked to lower

belief divergence. This pattern suggests that risk-averse individuals tend to update their beliefs

more cautiously in response to new information, potentially anchoring more strongly to prior

beliefs. Consequently, groups composed of more risk-averse members are less likely to become

polarized, possibly due to a general reluctance to overreact to ambiguous or extreme signals.

4.3 Biased Sources

Now we examine how participants update their beliefs when exposed to signals originating

from biased sources by analyzing CU and IU treatments: in CU, participants receive signals

from others who made congruent predictions in terms of the majority color of the urn in the

first period; in IU, participants are shown signals from individuals who had predicted the in-

congruent outcome in terms of the majority color in the first period. As in Section 4.2, we first

focus on belief updating, that is, how participants aggregate new information (incoming par-

tial signals) with existing beliefs, after which we also examine how learning inefficiency and

polarization evolve over time.

Figure 6 presents the patterns of signal interpretation under these different conditions. In all

cases, participants interpret confirming signals (left Panels) — those aligned with their beliefs

in the previous period — in a manner closely consistent with the actual data. This pattern holds

regardless of whether the signals originate from biased sources. When participants unknow-

ingly receive signals from biased sources (in CU and IU), that is, always from participants they

made congruent or incongruent predictions in the first period, their interpretation of surprising

signals — those that contradict their beliefs in the previous period — is significantly distorted.

This behavior closely resembles the pattern observed under random signals (Panel Baseline),
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Figure 6: The impact of biased source on interpretation of observed balls

Notes: The figure shows the dynamics of the average gap between the number of red balls observed and the
interpreted number (inferred from predictions in Periods t − 1 and t) for confirming (left) and surprising (right)
signals. Blue and red lines indicate the majority color in participants’ predictions in Period t− 1. The three rows
correspond to the Baseline, CU and IU treatments, respectively.

indicating that when participants are unaware of the bias in the source, they treat the signals as

if they were unbiased and process them accordingly.

Figure 7 illustrates how these patterns of interpretation subsequently affect belief formation

— specifically, in terms of learning inefficiency and belief polarization. In the case of con-

firming signals (left Panels), as we have pointed out, participants interpreted the signal at its
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Figure 7: The impact of biased source on learning inefficiency and polarization

Notes: The figure shows the dynamics of learning inefficiency (green, solid lines) and polarization (purple, dashed
lines) for confirming (left) and surprising (right) signals. The three rows correspond to the Baseline, CU and IU
treatments, respectively.

face value, just like what they did in the Baseline Treatment. When information source is bi-

ased, the signals are drawn from systematically biased sources, thus treating them as unbiased

leads to a steady accumulation of error. Over time, this learning inefficiency not only persists

but even grows, especially when signals come from incongruent sources with opposing priors

(Panel IU×Confirming). In such cases, participants unknowingly follow confirming signals

that appear consistent with their beliefs but are actually misleading because the source is sys-

tematically biased. As this process repeats across periods, the cumulative distortion widens

the gap between perceived and actual information quality, resulting in increased learning in-

efficiency (p < 0.01). A comparable pattern holds for belief polarization: although initial
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divergence may appear limited, individuals gradually drift further apart as they accumulate

biased and confirming evidence.

Turning to surprising signals (right panels), the dynamics are more nuanced. When par-

ticipants are unaware of the source’s bias, they continue to interpret signals similarly to the

Baseline treatment, as they overreact to surprising signals. However, such overreaction can

sometimes offset the directional skew of the source because the underlying signal is biased.

That is, the upward adjustment toward the signal may partially cancel out the bias embedded

in it, especially early on. In these cases, occasional over-interpretation can temporarily reduce

accumulated error. However, this incidental correction is not systematic, and the overall learn-

ing inefficiency remains high relative to the Baseline treatment (CU v.s. Baseline p < 0.01, IU

v.s. Baseline p = 0.012).

Comparing between the two biased sources, it is worth noting that signals originating from

congruent sources tend to generate greater polarization compared to those from incongruent

sources (p < 0.01). This is because congruent sources are more likely to generate signals that

appear to confirm their prior beliefs, as new information comes from like-minded individuals,

and thus are more likely to reinforce existing views. This reinforcement limits belief movement

across groups and contributes to growing divergence over time. As shown in Figure 7, belief

polarization stays high under CU treatments. In contrast, exposure to incongruent sources

tends to induce more cautious or balanced responses, resulting in comparatively lower levels of

polarization. These findings suggest that not only the presence of bias, but also the direction of

source alignment, plays a critical role in shaping the collective trajectory of belief updating.

In summary, consistent with Hypotheses 2 and 3, unrecognized source bias can systemati-

cally distort belief formation, as participants treat biased signals as unbiased. These distortions

in belief updating, manifesting as learning inefficiency and belief polarization, tend to accumu-

late and intensify over time. Below we summarize these results.

Result 2. When unaware of source bias, participants update their beliefs as if the source were

unbiased. As a result, biased sources systematically distort belief formation, increasing both

learning inefficiency and polarization.
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To rigorously quantify how biased sources influence belief updating, we estimate the fol-

lowing regression specification:

Yist = β0 + β1 Surprisingist + β2 Biaseds + β3 Surprisingist × Biaseds + θXi + λt + εist (5)

where Biaseds indicates whether session s features signal sources with systematic directional

bias; all other variables are defined as above. The key coefficient of interest is β3, which cap-

tures whether—and to what extent—biased sources alter participants’ responses to surprising

signals.

Table 5 reports results from estimating Equation (5), focusing on how individuals interpret

signals from biased sources. The dependent variable is the deviation between the participant’s

interpreted number of red balls and the actual number observed. Regressions are split by par-

ticipants’ prior beliefs: columns (1)–(3) report results for those believing a red-majority, and

columns (4)–(6) for those believing a blue-majority.

Table 5: Interpretation of observed balls with biased signals

VARIABLES
Dependent Variable: Interpreted red balls - Observed red balls

Predict more red balls in the previous period Predict more blue balls in the previous period

(1) (2) (3) (4) (5) (6)

Surprising signal -0.818*** -0.825*** -0.817*** 0.893*** 0.907*** 0.909***
(0.275) (0.274) (0.273) (0.278) (0.276) (0.279)

Signal from congruent source -0.102 -0.0500 0.0381 0.0224
(0.113) (0.104) (0.0841) (0.0809)

Surprising signal × Signal from congruent source 0.140 0.150 -0.342 -0.362
(0.389) (0.387) (0.405) (0.402)

Signal from incongruent source -0.0372 -0.0620 -0.110 -0.0886
(0.116) (0.109) (0.100) (0.0932)

Surprising signal × Signal from incongruent source -0.0554 -0.0374 -0.242 -0.266
(0.367) (0.369) (0.341) (0.346)

Observations 1,841 1,951 2,873 2,449 2,369 3,577
R-squared 0.083 0.081 0.072 0.085 0.081 0.072
Period FEs YES YES YES YES YES YES

Notes: The first three columns report the results when participants predict more red balls in the previous period, while
the last three columns report the results when participants predict more blue balls in the previous period. Columns (1) and
(4) report the results using observations from the Baseline and CU treatments, columns (2) and (5) report the results using
observations from the Baseline and IU treatments, and columns (3) and (6) report the results using observations from the
Baseline, CU and IU treatments. Individual characteristics and period fixed effects are controlled for all columns. Standard
errors clustered at the participant level are reported in parentheses.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Across all specifications, surprising signals exert a large and statistically significant influ-

ence on belief updating. For participants who initially predicted a red majority, the coefficients
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are negative (approximately –0.82), indicating an overreaction to signals suggesting fewer red

balls than expected. For those predicting a blue majority, the coefficients are positive (around

0.90), reflecting a similar overreaction to signals indicating more red balls. This consistent

asymmetry reveals that participants assign excessive weight to surprising signals rather than

discounting them. Importantly, this pattern persists even when signals originate from biased

sources, suggesting that participants continue to interpret such information as if it were unbi-

ased, closely resembling the behavior observed under random-signal conditions.

The remaining coefficients examine whether this overreaction is moderated by alignment

between the participant’s prior belief and that of the signal source. The main effects of source

alignment — whether the signal comes from someone with similar or opposing priors — are

generally small and statistically insignificant. Likewise, the interaction terms between surpris-

ing signals and source alignment lack consistent significance, indicating that participants over-

react to disconfirming information regardless of the source’s identity. In other words, when the

identity of the source is not disclosed, individuals fail to adjust for potential bias, and belief

updating remains systematically distorted.

Table 6: Learning efficiency with biased signals

VARIABLES Dependent Variable: abs(Predict - Best guess)
(1) (2) (3) (4) (5) (6)

Surprising signal -0.462 -0.537 -0.469
(0.429) (0.429) (0.426)

Signal from congruent source 3.420*** 3.319*** 4.113*** 4.022***
(0.800) (0.793) (0.846) (0.836)

Surprising signal × Signal from congruent source -2.137*** -2.186***
(0.628) (0.629)

Signal from incongruent source 3.332*** 3.441*** 5.785*** 5.860***
(0.738) (0.728) (0.982) (0.977)

Surprising signal × Signal from incongruent source -5.043*** -4.975***
(0.915) (0.909)

Observations 4,719 4,752 7,095 4,719 4,752 7,095
R-squared 0.064 0.042 0.044 0.072 0.077 0.071
Period FEs YES YES YES YES YES YES

Notes: Columns (1) and (4) report the results using observations from the Baseline and CU treatments, columns (2) and (5) report
the results using observations from the Baseline and IU treatments, and columns (3) and (6) report the results using observations
from the Baseline, CU and IU treatments. Individual characteristics and period fixed effects are controlled for all columns. Standard
errors clustered at the participant level are reported in parentheses.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The subsequent consequences of this interpretive asymmetry are evident in Tables 6 and
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7, which explore impacts on learning accuracy and belief polarization, respectively. Table

6 examines learning inefficiency: signals from biased sources, whether aligned or opposed,

consistently reduce learning accuracy, as reflected in the positive and significant coefficients

on both Signal from congruent source and Signal from incongruent source. This indicates that

exposure to biased information reduces predictive precision regardless of source alignment.

However, the interaction terms with Surprising signal introduce an important nuance. While

biased signals generally impair learning, the exaggerated responses to disconfirming signals can

occasionally offset some of this distortion. The significantly negative interaction coefficients

(−2.14 for congruent source, −5.04 for incongruent source) suggest that such overreactions

may, at times, bring participants’ beliefs closer to the benchmark prediction. These corrections

are not the result of accurate inference, but rather incidental byproducts of excessive respon-

siveness, which nonetheless illustrate moments when interpretive asymmetry unexpectedly im-

proves learning accuracy.

Table 7: Polarization with biased signals

VARIABLES Dependent Variable: sd(Predict)
(1) (2) (3) (4) (5) (6)

Surprising signal 0.119 -0.157* 0.0126
(0.0881) (0.0836) (0.0861)

Signal from congruent source 3.689*** 3.679*** 3.995*** 3.985***
(0.122) (0.122) (0.126) (0.127)

Surprising signal × Signal from congruent source -0.823*** -0.867***
(0.115) (0.115)

Signal from incongruent source 0.446*** 0.444*** 0.649*** 0.623***
(0.108) (0.112) (0.120) (0.120)

Surprising signal × Signal from incongruent source -0.416*** -0.369***
(0.113) (0.110)

Observations 4,719 4,752 7,095 4,719 4,752 7,095
R-squared 0.506 0.271 0.473 0.513 0.278 0.481
Period FEs YES YES YES YES YES YES

Notes: Columns (1) and (4) report the results using observations from the Baseline and CU treatments, columns (2) and (5) report
the results using observations from the Baseline and IU treatments, and columns (3) and (6) report the results using observations
from the Baseline, CU and IU treatments. Individual characteristics and period fixed effects are controlled for all columns. Standard
errors clustered at the participant level are reported in parentheses.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 7 shifts the focus to belief polarization. As anticipated, biased signals significantly in-

crease polarization: both Signal from congruent source and Signal from incongruent source are

linked to greater belief divergence. Once again, the interaction terms with Surprising signal
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are negative and statistically significant (−0.87 for congruent source, −0.37 for incongruent

source), suggesting that overreaction to surprising information can partially offset this trend.

When participants respond too strongly to unexpected signals, these shifts can occasionally

reduce opinion dispersion, though only temporarily. Nevertheless, the overall level of polariza-

tion remains high, underscoring the limits of this moderating effect.

4.4 Awareness of Biased Sources

Next, we delve into the impact of awareness of biased source. Specifically, we are interested

in whether and to what extent participants update their beliefs when they become aware that

partial signals are not purely random: they either always come from those who share congruent

first-period predictions or hold incongruent first-period predictions.

Figure 8 presents the patterns of signal interpretation under these different conditions.

When new signals confirm predictions in the last period (left panels), the interpretation re-

sembles that in other treatments (including both from unbiased source, and from biased source

but participants are unaware of it) and is close to actual data observed. This is not the case when

new signals contradicts predictions in the last period (right panels). When participants observe

surprising signals and are informed that signals are from biased source, they tend to discount

the informativeness of the signal and interpret it more cautiously. Overreaction to surprising

signal still remain, but is mitigated significantly (p < 0.01).

Likewise, Figure 9 illustrates how such interpretive patterns translate into subsequent effects

on belief formation in terms of learning inefficiency and belief polarization. Once participants

are informed that the information source is biased, in particular when the signal comes from

someone with incongruent initial belief, they begin to interpret surprising signals more cau-

tiously. It is worth noting that this adjustment brings beliefs closer to the biased signal rather

than the truth. When individuals reduce overreaction to surprising signals, they move less in

the right direction, allowing the source’s bias to exert a stronger cumulative influence. As a

result, awareness to biased information sources increases rather than reduces learning ineffi-

ciency (CA vs CU p = 0.026). This dynamic reveals a paradox: awareness of bias tempers

overreactions but does not guarantee better learning outcomes, as it can also eliminate the un-
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Figure 8: The impact of awareness of biased source on interpretation of observed balls

Notes: The figure shows the dynamics of the average gap between the number of red balls observed and the
interpreted number (inferred from predictions in Periods t − 1 and t) for confirming (left) and surprising (right)
signals. Blue and red lines indicate the majority color in participants’ predictions in Period t − 1. The four rows
correspond to the CA, CU, IA and IU treatments, respectively.

intended belief-correction benefits that overreactions sometimes produce. At the same time,

awareness even intensifies polarization (CU v.s. CA p < 0.01, IU vs IA p = 0.035), as reduced
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Figure 9: The impact of awareness of biased source on learning inefficiency and polarization

Notes: The figure shows the dynamics of learning inefficiency (green, solid lines) and polarization (purple, dashed
lines) for confirming (left) and surprising (right) signals. The four rows correspond to the CA, CU, IA and IU
treatments, respectively.

responsiveness to contradicting evidence reinforces initial belief differences.

It is worth noting that both unrecognized and recognized source bias can systematically

distort belief formation, though through different mechanisms. When source bias is concealed,

participants are misled by treating biased signals as unbiased. When source bias is disclosed,
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individuals become more cautious and exhibit reduced overreaction to surprising signals. How-

ever, this attenuation does not always lead to more accurate belief formation, as overreaction

can, in some cases, partially offset the distortions introduced by biased information sources.

Below we summarize these results, which are not consistent with Hypothesis 5. A plausible

explanation for this discrepancy lies in the cognitive difficulty of translating the knowledge of

a bias into a concrete adjustment. While identifying a source as biased may be straightforward,

the subsequent mental step — reverse-engineering the true signal — is inherently complex.

This complexity may prevent individuals from properly incorporating the information, leading

to the observed outcomes.

Result 3. When participants are informed of source bias, then temper their overreaction to

surprising signals and interpret such signals more at face value — particularly when signals

come from belief-incongruent sources. While this adjustment intensifies belief polarization, its

average effect on learning efficiency is negligible.

To further investigate whether awareness of source identity alters the impact of surprising

signals, we estimate the following specification:

Yist = γ0 + γ1 Surprisingist + γ2 Knows + γ3 Surprisingist × Knows + θXi + λt + εist (6)

where Knows indicates whether participants in session s are informed about the group identity

(same or different) of the participant from whom the signal was drawn; all other variables are

defined as above. The main coefficient of interest is γ3, which captures whether this awareness

moderates the interpretation of surprising signals originating from biased sources.

Table 8 presents results from estimating Equation (6). Consistent with earlier findings,

surprising signals exert strong effects on belief updating across all specifications, reflecting a

persistent pattern of overreaction. The interaction terms in columns (2) and (4) are statistically

significant and opposite in sign to the main surprising signal effect. The coefficient is 1.029 for

red-to-blue updating and−0.651 for blue-to-red, indicating that participants revise their beliefs

less aggressively when they know the signal comes from someone with different priors. In
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contrast, no such moderating effect appears when the signal is linked to someone with similar

priors: the interaction terms in columns (1) and (3) are small and not statistically significant.

These results point to a conditional correction pattern: source awareness tempers overreaction,

but only when the information is known to come from a participant with opposing beliefs.

Table 8: Interpretation of observed balls when knowing signal sources

VARIABLES

Dependent Variable: Interpreted red balls - Observed red balls
Predict more red balls in the previous period Predict more blue balls in the previous period

Signal from congruent source Signal from incongruent source Signal from congruent source Signal from incongruent source
(1) (2) (3) (4)

Surprising signal -0.681** -0.831*** 0.544* 0.610***
(0.277) (0.260) (0.296) (0.216)

Know signal source -0.0542 -0.0358 -0.0641 0.0315
(0.115) (0.115) (0.0658) (0.123)

Surprising signal 0.473 1.029*** -0.446 -0.651**
× Know signal source (0.383) (0.309) (0.349) (0.264)

Observations 1,828 2,184 2,462 2,136
R-squared 0.043 0.060 0.026 0.045
Period FEs YES YES YES YES

Notes: The first two columns report results when participants predict more red balls in the previous period, while the last two
columns report the results when participants predict more blue balls in the previous period. Columns (1) and (3) report the results
using observations from the CU and CA treatments, and columns (2) and (4) report the results using observations from the IU and
IA treatments. Individual characteristics and period fixed effects are controlled for all columns. Standard errors clustered at the
participant level are reported in parentheses.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The coefficients of the interaction terms in Table 8, combined with the regression estimates

in Table 5, illuminate the interplay between cognitive bias and source bias in the belief updating

process. Table 5 shows that when signals are biased but the bias is not disclosed to individuals,

belief updating is driven primarily by whether the signals confirm or contradict prior beliefs,

regardless of the direction of the bias. In other words, individuals respond to signals based on

their congruence with prior beliefs, without accounting for potential source bias or its inter-

action with cognitive tendencies. However, when individuals are made aware of the direction

of the biased information sources, the influence of source bias, particularly its interaction with

cognitive bias, becomes evident as shown in Table 8. Specifically, when signals are known to

originate from sources holding opposing beliefs, the tendency to overreact to surprising sig-

nals is mitigated. This debiasing effect does not occur when signals come from sources with

consistent beliefs, as summarized in Result 3.

The subsequent effects of source awareness on belief accuracy and polarization are ex-
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Table 9: Learning efficiency when knowing signal sources

VARIABLES
Dependent Variable: abs(Predict - Best guess)

Signal from congruent source Signal from incongruent source

(1) (2) (3) (4)

Surprising signal -2.499*** -5.072***
(0.515) (0.803)

Know signal source 0.826 1.156 -0.673 -1.957*
(0.877) (0.977) (0.859) (1.181)

Surprising signal × Know signal source -1.112 2.923***
(0.697) (1.008)

Observations 4,719 4,719 4,752 4,752
R-squared 0.016 0.034 0.020 0.048
Period FEs YES YES YES YES

Notes: Columns (1) and (2) report the results using observations from the CU and CA treatments, and columns
(3) and (4) report the results using observations from the IU and IA treatments. Individual characteristics and
period fixed effects are controlled for all columns. Standard errors clustered at the participant level are reported
in parentheses.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

plored in Tables 9 and 10. Table 9 shows that surprising signals consistently enhance learning

efficiency by reducing prediction error. This effect holds for both congruent and incongruent

sources, a larger reduction observed when the surprising signal originates from incongruent

source. Source awareness further contributes to this improvement when signals come from

incongruent source, indicating that knowing the signal’s direction helps participants better cor-

rect for potential bias. However, this moderating effect is weaker for surprising signals. The

interaction term shows that while awareness still reduces learning inefficiency, it significantly

dampens the corrective force of surprising signals, cutting the effect by more than half. In

contrast, when signals come from congruent source, source awareness has no meaningful im-

pact: both the coefficients of Know signal source and that of the interaction term are small and

statistically insignificant, suggesting that participants treat information from belief-congruent

sources similarly, regardless of whether its origin is disclosed.

Table 10 reveals that surprising signals reduce belief polarization, although this effect is

relatively small and insignificant when the signals originate from incongruent source. How-

ever, awareness of source identity consistently increases belief polarization, with main effects

ranging from 0.668 to 0.857. The significant negative interaction (−0.406 and −0.309) in-

dicates that, while awareness of source identity generally increases polarization, this effect is
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attenuated when the information is surprising. Although the net effect remains polarization-

increasing, the attenuation is both substantial and meaningful—approximately 36% to 61%.15

Table 10: Polarization when knowing signal sources

VARIABLES
Dependent Variable: sd(Predict)

Signal from congruent source Signal from incongruent source

(1) (2) (3) (4)

Surprising signal -0.245*** -0.109
(0.0925) (0.0795)

Know signal source 0.668*** 0.799*** 0.681*** 0.857***
(0.138) (0.149) (0.220) (0.233)

Surprising signal × Know signal source -0.406*** -0.309**
(0.120) (0.145)

Observations 4,719 4,719 4,752 4,752
R-squared 0.069 0.082 0.216 0.219
Period FEs YES YES YES YES

Notes: Columns (1) and (2) report the results using observations from the CU and CA treatments, and columns
(3) and (4) report the results using observations from the IU and IA treatments. Individual characteristics and
period fixed effects are controlled for all columns. Standard errors clustered at the participant level are reported
in parentheses.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

To sum up, our estimates highlight several key findings. First, participants generally over-

react to surprising signals, demonstrating a surprise-driven updating bias rather than a confor-

mation bias. Second, when the source is biased but participants are unaware of this, they treat

these signals as if they were randomly drawn. As a result, biased sources typically increase

learning inefficiency and polarization. Interestingly, these negative effects are partially allevi-

ated when participants overreact to surprising signals, which can inadvertently counterbalance

the impact of source bias. Third, when the source of the signals is made aware, participants

tend to react less strongly to surprising signals. While source awareness can reduce learning in-

efficiency particularly when signals are from belief-incongruent source, it also increases belief

polarization for both congruent and incongruent sources. Again, this polarization-increasing

effect is moderated in the presence of surprising signals.

15These values are calculated as the ratios of the interaction term coefficient to that of the main effect of knowing
the signal source.
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5 Concluding Remarks

Rapid technological advancements and widespread reliance on digital platforms for informa-

tion consumption have reshaped how people form beliefs and opinions. In particular, algo-

rithmic recommendation systems are often devised to deliver personalized content for higher

view duration, which could potentially exacerbates political and social polarization by creating

filter bubbles. At the same time, cognitive biases intrinsic to human significantly influence how

individuals interpret and process new information. Understanding how these algorithmic and

cognitive biases interact and jointly shape belief updating processes is crucial in addressing

fundamental issues of both belief formation and polarization.

Our study employs a controlled laboratory experiment to systematically examine belief

updating when individuals encounter biased signals. We identify a persistent behavioral pat-

tern wherein individuals exhibit a surprise-driven learning bias, characterized by overreaction

to signals that challenge their prior beliefs, rather than traditional confirmation bias. When

subjects unknowingly receive information from biased sources, their learning inefficiency and

polarization notably increase. Although informing subjects about source bias reduces their

overreaction to surprising signals, this awareness alone intensifies polarization without signif-

icantly improving learning efficiency, indicating that individuals struggle to optimally adjust

their beliefs despite increased skepticism.

Our results advance the understanding of belief updating biases by providing clear evi-

dence of surprise-driven rather than confirmatory bias in a social learning context. We also

highlight the complex interactions between cognitive biases and algorithmically biased infor-

mation sources, revealing the limitations of simple awareness as an effective corrective strat-

egy. From a practical standpoint, our findings offer valuable insights for policymakers and

platform designers seeking to curb polarization and misinformation in the digital era. The con-

trolled laboratory environment and the abstract experimental setting employed in this study

enable precise manipulation of treatment conditions and accurate measurement of key vari-

ables, such as signals and beliefs. This design also allows us to cleanly identify causal effects

while minimizing the influence of motivated reasoning (see Charness et al., 2021). Although

our urn-inference task is relatively abstract compared to the complexity and diversity of real-
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world digital information consumption, it effectively captures key aspects of how individuals

process abundant, rapidly evolving, and relatively impersonal information streams of digital

content. Consequently, our results provide valuable insights into the cognitive processes un-

derlying belief updating, the role of source bias, and the potential effectiveness of interventions

aimed at mitigating biased information processing. Looking ahead, we believe future research

can complement our findings with empirical studies conducted in real-world digital environ-

ments, and explore additional interventions beyond awareness, such as training individuals in

bias-detecting and debiasing techniques, or introducing social feedback mechanisms that en-

courage open communication and deliberation, thereby promoting more balanced information

processing.

Declaration of generative AI and AI-assisted technologies in the writing process

During the preparation of this work the authors used ChatGPT in order to improve the

readability and language of the manuscript. After using this tool, the authors reviewed and

edited the content as needed and take full responsibility for the content of the published article.
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Supplementary Materials

A Robustness

To further examine the robustness of surprising-driven learning, Figure S1 explores whether

the magnitude and direction of signal distortion vary across different urn compositions. Specif-

ically, we compare outcomes across urns with 36, 44, and 55 red balls to assess two potential

concerns. First, we test whether the strength of the bias differs between more extreme versus

more balanced distributions by comparing the 36-red and 44-red urns. Second, we evaluate

whether our measure—based on participants’ reports of the number of red balls—introduces

asymmetries depending on whether the true state is red- or blue-dominant, by comparing the

44-red and 55-red urns.

Across all panels, we plot the difference between the number of red balls participants in-

terpret from each signal and the actual number observed, disaggregated by prior belief (i.e.,

whether participants predicted more red or blue balls in the previous period). In the left-hand

panels, where signals confirm prior beliefs, both red- and blue-leaning participants interpret

the signals with minimal distortion. In contrast, the right-hand panels reveal systematic over-

reaction under surprising signals: participants tend to overinterpret signals that contradict their

prior belief. Both patterns hold symmetrically for both red- and blue-leaning individuals and

persists across all urn types. Overall, these results reinforce our earlier findings: interpreta-

tion bias under surprising signals is robust across different distributions and does not appear

to be driven by framing or reporting asymmetries. In addition, both learning inefficiency and

belief polarization exhibit similar patterns across different urn compositions, reinforcing the

robustness of our findings across signal environments.1

1The figures showing learning inefficiency and polarization across different urn compositions are available
upon request.
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Figure S1: Interpretation of observed balls under different urn compositions

Notes: The figure shows the dynamics of the average gap between the number of red balls observed and the
interpreted number (inferred from predictions in Periods t− 1 and t). The left subplot corresponds to confirming
signals (aligned with predictions in t − 1); the right subplot to surprising signals (contradicting predictions in
t − 1). Blue and red lines indicate the majority color in participants’ predictions in Period t − 1. The three rows
correspond to urns containing 36, 44, and 55 red balls, respectively.

B Instructions for the Experiment (Baseline treatment, translated into

English)

You are currently participating in a decision-making experiment. Today’s experiment consists

of two parts, in each of which you will need to make some decisions. Your earnings depend on

your decisions (and luck), so it is very important to read these instructions carefully.

During the experiment, you must not communicate with other participants in any form, nor
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can you use devices like mobile phones. To protect your privacy, all results of the experiment

will be processed anonymously. If you have any questions, please raise your hand, and the

experimenter will come to you to assist. If you violate any of the above rules, your decisions

will not be analyzed, and you will receive no earnings.

Your earnings from the first part of the experiment will be calculated in points, which will be

converted at the end of the experiment at a rate of 10 points = 1 RMB. Earnings from the second

part will be paid directly in RMB (Yuan). In addition to your earnings from the experiment

decisions, you will receive a participation fee of 10 RMB. At the end of the experiment, your

total earnings will be transferred to you via WeChat or Alipay.

Instructions for Part 1 of the Experiment

This part consists of three rounds, each following the same procedure detailed below.

In each round, there is a box containing red and blue balls, totaling 99 balls, but the ex-

act number of each color is unknown. In each round, all participants face exactly the same

box. Each round includes 11 stages, and during these stages, the number of red and blue balls

remains unchanged. The specific procedure for each stage is as follows:

Stage 1: The computer randomly draws 5 balls with replacement for each participant from

the box of 99 balls. After each ball is drawn, it is returned to the box. The draws for different

participants are independent; thus, the proportion of red and blue balls observed by different

participants may be the same or different. For example, Participant A may randomly get 3 red

balls and 2 blue balls, Participant B may also randomly get 3 red and 2 blue balls, Participant C

might randomly get 1 red and 4 blue balls, and so on. After seeing the 5 randomly drawn balls,

you must predict how many red balls (0-99) you think are in the box.2

Stages 2-11: In each of these stages, the computer will randomly3 select another participant

from the remaining participants (excluding yourself).4 Then, it will randomly select 3 balls
2In Treatments CA and IA, the following sentence appears here: “Then, based on each participant’s prediction

of the number of red balls in Stage 1, the computer will divide all predictions into two intervals: one interval
where the predicted number of red balls is less than 50 (i.e., the number of blue balls is 50 or more), and another
interval where the predicted number of red balls is 50 or more.”

3In Treatments CU and IU, where the information source is non-random but unknown to participants, we omit
the word “randomly” in this sentence.

4In Treatment IA, this sentence is replaced by the following: “In each of these stages, the computer will
randomly select, for each participant, one person from all other participants whose Stage 1 predictions fall into
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without replacement from the 5 balls initially observed by that participant in Stage 1 and

display these balls to you. After observing these 3 balls, you must again predict how many

red balls (0-99) you think are in the box.

Note that the participant you are matched with in each of Stages 2-11 is randomly chosen,

and may or may not be the same person each stage. You will not know who this participant

is. Even if you are matched with the same participant across different stages, the 3 balls you

observe may differ since they are randomly drawn from the original 5 balls that participant

observed in Stage 1. Your screen will display the 3 balls observed in the current stage, as well

as the balls observed in all previous stages (including Stage 1), and your predictions for each

stage. At the end of Stage 11, you must answer the following question carefully: what do

you think is the maximum possible difference between your Stage 11 prediction and the

actual number of red balls in the box? (Answering this question will earn you an additional

30 points.)

Earnings Calculation: At the end of the experiment, the computer will randomly select one

stage from each round (Stage 1-11) for payout calculation. Your earnings (in points) for each

round are calculated as follows:

150− 0.015× (Actual number of red balls− Your predicted number of red balls)2

Important notes:

1. The three boxes used in the three rounds (Box 1, Box 2, Box 3) each contain 99 balls

(red and blue combined), but the proportion of red and blue balls differs across boxes. The

sequence of the three rounds will be randomly chosen by the computer from the following

three possibilities:

• Sequence 1: Box 1 → Box 2 → Box 3

• Sequence 2: Box 3 → Box 1 → Box 2

a different interval. According to the definitions of interval above, if your Stage 1 prediction for the number of
red balls is less than 50, the computer will randomly select one participant who predicted 50 or more red balls in
Stage 1; if your Stage 1 prediction is 50 or more, the computer will randomly select one participant who predicted
fewer than 50 red balls in Stage 1.” Similar replacement also takes place in Treatment CA.
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• Sequence 3: Box 2 → Box 3 → Box 1

2. After completing the first two rounds, you will not be informed of the actual number of

red balls in these boxes or your earnings from those rounds. Only after all three rounds (and

the post-experiment questionnaire) are complete will your screen display for each round: (1)

the randomly selected stage for payment and your predicted number of red balls for that stage;

and (2) your earnings for each round and your total earnings for the entire experiment.

Before starting the experiment, you need to correctly answer several quiz questions.

Instructions for Part 2 of the Experiment

This part consists of two tasks.

Task 1

In front of you are three doors: behind one door is a prize of 5 RMB, and behind each of the

other two doors is a prize of 1 RMB. Please choose one door. After making your initial choice,

the computer will provide some additional information, after which you will have the opportu-

nity to change your choice and confirm your final decision. Your final choice determines your

payoff.

Task 2

You need to make 10 decisions in a decision table. Each row corresponds to one decision,

in which you must choose the option you prefer between options A and B. Note that only one of

these 10 decisions will be randomly selected for payment. Each decision has an equal chance

of being chosen, so please make your selections carefully.

Once the computer randomly selects one row, your earnings will be determined as follows:

if you choose Option A for that decision, you will earn 4 RMB. If you choose Option B, you

have a chance of earning either 12 RMB or 0 RMB. The computer will generate a random

result according to the probability specified in the decision to determine whether you receive

12 RMB or 0 RMB.
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C Quiz Questions (Baseline treatment, translated into English)

1. Today’s experiment consists of rounds, each with a virtual box. In these boxes, the

total numbers of red and blue balls are , and the proportions of blue and red balls

in these boxes are .

(a) three, the same and equals 99, different

(b) five, different, different

(c) three, different, possibly the same or different

(d) five, the same and equals 99, possibly the same or different

2. In Stage 1 of each round, you can see balls, and the color composition of the balls

you observed and those observed by other participants is .

(a) three, different

(b) five, different

(c) three, possibly the same or different (depending on computer’s draw)

(d) five, possibly the same or different (depending on computer’s draw)

3. In Stage 2–11 of each round, you can see balls. The balls comes from other

participants that are across stage.

(a) three, different

(b) five, different

(c) three, possibly the same or different (depending on computer’s draw)

(d) five, possibly the same or different (depending on computer’s draw)

4. In each round, your experimental earnings are . The experiment will pay

rounds in total.

(a) randomly selected from Stages 1–11, three

(b) randomly selected from Stages 2–11, three
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(c) the summation of earnings in Stages 2–11, one randomly selected

(d) the summation of earnings in Stages 1–11, one randomly selected

5. In each round, balls in Stage 1 are drawn , and balls in Stage 2–11 are drawn .

(a) with replacement, with replacement

(b) with replacement, without replacement

(c) without replacement, with replacement

(d) without replacement, without replacement

6. Suppose that in some stage, you predicted 27 red balls in the box, and the actual number

of red balls is 67. (Assuming this stage is randomly selected for payment, ) then you earn

points in this stage. (enter an non-negative integer between 0–150).

7. Suppose that in some round, you predicted 55 red balls in Stage 1 of this round, then in

Stages 2–11 of this round, the 3 balls you will observe comes from participants whose

prediction of red balls in Stage 1 is .5

(a) less than 50

(b) greater than or equal to 50

(c) possibly less than 50, or greater than or equal to 50

(d) none of the above is correct

5This question appears only in Treatments IA and CA.
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D Screenshots of the Experimental Interface (Urn Inference Task)6

Figure S2: Stage 1 information

Figure S3: Stage 1 draw results and prediction

Figure S4: Stages 2-11 information

6Screenshots for other tasks are available upon request.
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Figure S5: Stages 2-11 draw results and prediction

Figure S6: Confidence elicitation after Stage 11

Figure S7: Information at the beginning of a new round (urn)
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